Abstract

ABSTRACTObservations of efficient room temperature photoluminescence (PL) from porous Si have generated a great deal of interest in the optical properties of nm-scale Si structures. The stochastic character of porous-Si fabrication results in a distribution of crystal sizes and shapes. We report on a scalable (to large areas) and manufacturable (to high volumes) fabrication technology for uniform, nm-linewidth Si structures providing an important testbed for controlled studies of these optical properties. Large areas ( ∼ 1 cm2) of extreme sub-μm structures (to ∼ 5 nm) are re-producibly fabricated. Both walls (1-D confinement) and wires (2-D confinement) are reported. The fabrication process includes: interferometric lithography, highly anisotropic KOH etching, and structure dependent oxidation. For the walls, nearly perfect <111> crystal planes form the sidewalls and very high width/depth aspect ratios (> 50) have been achieved. Raman scattering results on the walls demonstrate three regimes: 1) lineshapes and cross sections similar to bulk Si for line widths, W > 200 nm; 2) electromagnetic resonance enhancement of the cross section ( to - 100x) for W from 50-200 nm; and 3) highly asymmetric lineshapes and splittings from W < 30 nm. Photoluminescence is observed for the thinnest samples (W < 10 nm) and is as intense as that observed from porous Si with a spectral linewidth ∼ 50 % smaller than that of porous Si.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.