Abstract

We present a (near) linear scaling implementation of high-spin open-shell Møller-Plesset perturbation theory using pair natural orbitals (PNO-RMP2). The theory is based on a new variant of open-shell MP2 which is fully spin-adapted and uses a single set of spin-free amplitudes, as in closed-shell MP2. This method, denoted SROMP2, is invariant to unitary orbital transformations within the closed, open, and virtual orbital subspaces. Accordingly, only a single set of PNOs per spatial orbital pair is needed, and the efficiency is similar to closed-shell calculations. The PNOs are obtained using a semicanonical approximation with large domains of projected atomic orbitals (PAOs). Linear scaling is achieved provided that the open-shell orbitals are local, and distant pairs are treated by multipole approximations. The method is efficiently parallelized. The convergence of ionization and reaction energies as a function of the PAO and PNO domain sizes is demonstrated and found to be very similar as for closed-shell calculations. The suitability of the PNOs for explicitly correlated PNO-RCCSD-F12 calculations is also tested. So far, this method is only simulated using a conventional program with appropriate projections to the PAO and PNO subspaces. It is demonstrated for radical stabilization energies as well as ionization potentials that the errors caused by the local domain approximations with our default thresholds are negligible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.