Abstract

This article discusses how techniques from reinforcement learning (RL) can be exploited to transition to a model-free and scalable wide-area oscillation damping control of power grids. We present two control architectures with distinct features. Performing full-dimensional RL control designs for any practical grid would require an unacceptably long learning time and result in a dense communication architecture. Our designs avoid the curse of dimensionality by employing ideas from model reduction. The first design exploits time-scale separation in the generator electro-mechanical dynamics arising from coherent clustering, and learns a controller using both electro-mechanical and non-electro-mechanical states while compensating for the error in incorporating the latter through the RL loop. The second design presents an output-feedback approach enabled by a neuro-adaptive observer using measurements of only the generator frequencies. The controller exhibits an adaptive behavior that updates the control gains whenever there is a notable change in the loads. Theoretical guarantees for closed-loop stability and performance are provided for both designs. Numerical simulations are shown for the IEEE 68-bus power system model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.