Abstract

Due to inhomogeneous broadening, the absorption lines of rare-earth-ion dopants in crystals are many order of magnitudes wider than the homogeneous linewidths. Several ways have been proposed to use ions with different inhomogeneous shifts as qubit registers, and to perform gate operations between such registers by means of the static dipole coupling between the ions. In this paper we show that in order to implement high-fidelity quantum gate operations by means of the static dipole interaction, we require the participating ions to be strongly coupled, and that the density of such strongly coupled registers in general scales poorly with register size. Although this is critical to previous proposals which rely on a high density of functional registers, we describe architectures and preparation strategies that will allow scalable quantum computers based on rare-earth-ion-doped crystals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call