Abstract

Large size of capacitors is the main hurdle in miniaturization of current electronic devices. Herein, a scalable solution-based layer-by-layer engineering of metallic and high-κ dielectric nanosheets into multilayer nanosheet capacitors (MNCs) with overall thickness of ≈20nm is presented. The MNCs are built through neat tiling of 2D metallic Ru0.95 O2 0.2- and high-κ dielectric Ca2 NaNb4 O13 - nanosheets via the Langmuir-Blodgett (LB) approach at room temperature which is verified by cross-sectional high-resolution transmission electron microscopy (HRTEM). The resultant MNCs demonstrate a high capacitance of 40-52 µF cm-2 and low leakage currents down to 10-5 -10-6 A cm-2 . Such MNCs also possess complimentary in situ robust dielectric properties under high-temperature measurements up to 250°C. Based on capacitance normalized by the thickness, the developed MNC outperforms state-of-the-art multilayer ceramic capacitors (MLCC, ≈22 µF cm-2 /5 × 104 nm) present in the market. The strategy is effective due to the advantages of facile, economical, and ambient temperature solution assembly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.