Abstract

We present a BIST architecture based on a Multi-Input Signature Register (MISR) expanding single input vectors into sequences, which are used for testing of delay faults. Input vectors can be stored on-chip or in the ATEs in the latter case, a low speed tester can be employed though the sequences are applied at-speed to the block-under-test. The number of input vectors (and thus the area demand on-chip or ATE memory requirements) can be traded for the test application time. We propose several methods for generating input vectors, which differ in test application time, area requirements and algorithm run-time. As all of them require only a two-pattern test as input, IP cores can be handled by these methods. The block-under-test can be switched off for some amount of time between application of consecutive input vectors. We provide arguments why this approach may be the only way to meet thermal and power constraints. Furthermore, we demonstrate how the BIST scheme can use these cool-down breaks for re-configuration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.