Abstract
Tailoring water supply to achieve confined heating has proven to be an effective strategy for boosting solar interfacial evaporation rates. However, because of salt clogging during desalination, a critical point of constriction occurs when controlling the water rate for confined heating. In this study, we demonstrate a facile and scalable weaving technique for fabricating core–sheath photothermal yarns that facilitate controlled water supply for stable and efficient interfacial solar desalination. The core–sheath yarn comprises modal fibers as the core and carbon fibers as the sheaths. Because of the core–sheath design, remarkable liquid pumping can be enabled in the carbon fiber bundle of the dispersed super-hydrophilic modal fibers. Our woven fabrics absorb a high proportion (92%) of the electromagnetic radiation in the solar spectrum because of the weaving structure and the carbon fiber sheath. Under one-sun (1 kW·m−2) illumination, our woven fabric device can achieve the highest evaporation rate (of 2.12 kg·m−2·h−1 with energy conversion efficiency: 93.7%) by regulating the number of core–sheath yarns. Practical application tests demonstrate that our device can maintain high and stable desalination performance in a 5 wt% NaCl solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.