Abstract
During development, progenitor cells follow timetables for differentiation that span many cell generations. These developmental timetables are robustly encoded by the embryo, yet scalably adjustable by evolution, facilitating variation in organism size and form. Epigenetic switches, involving rate-limiting activation steps at regulatory gene loci, control gene activation timing in diverse contexts, and could profoundly impact the dynamics of gene regulatory networks controlling developmental lineage specification. Here, we develop a mathematical framework to model regulatory networks with genes controlled by epigenetic switches. Using this framework, we show that such epigenetic switching networks uphold developmental timetables that robustly span many cell generations, and enable the generation of differentiated cells in precisely defined numbers and fractions. Changes to epigenetic switching networks can readily alter the timing of developmental events within a timetable, or alter the overall speed at which timetables unfold, enabling scalable control over differentiated population sizes. With their robust, yet flexibly adjustable nature, epigenetic switching networks could represent central targets on which evolution acts to manufacture diversity in organism size and form.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.