Abstract

The main novelty of this paper is to introduce a new real-time optimized control allocation (CA) method of the currents scalable to any modular multilevel converter (MMC). It can be adapted to an MMC of any number of phases and (a) submodules (SM) without having to undergo changes in the control algorithm. First the scalable state-space model of the MMC currents is presented end than, this minimal order model is used to develop the scalable current control allocation method. The control allocation is computed by fast real-time optimization using linear programming and quadratic programming (b) algorithms. Three control allocation methods are Hardware-In- the-Loop tested for polyphase AC systems from 3 up to 101 phases, showing their ability to guarantee the current reference tracking as well as the scalability of the tracking performance. A comparison between the resolution methods highlights the benefits and pitfalls of each.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.