Abstract

We present a novel offline-online method to mitigate the computational burden of the characterization of posterior random variables in statistical learning. In the offline phase, the proposed method learns the joint law of the parameter random variables and the observable random variables in the tensor-train (TT) format. In the online phase, the resulting order-preserving conditional transport can characterize the posterior random variables given newly observed data in real time. Compared with the state-of-the-art normalizing flow techniques, the proposed method relies on function approximation and is equipped with a thorough performance analysis. The function approximation perspective also allows us to further extend the capability of transport maps in challenging problems with high-dimensional observations and high-dimensional parameters. On the one hand, we present novel heuristics to reorder and/or reparametrize the variables to enhance the approximation power of TT. On the other hand, we integrate the TT-based transport maps and the parameter reordering/reparametrization into layered compositions to further improve the performance of the resulting transport maps. We demonstrate the efficiency of the proposed method on various statistical learning tasks in ordinary differential equations (ODEs) and partial differential equations (PDEs).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.