Abstract
Nanoparticles like quantum confined ZnS semiconductor nanocrystals, exhibit unique structure-property relationships. Narrow particle size distributions (PSDs) become one of the most important factors to tailor product performance. Size selective precipitation has already been proven to be an effective post processing strategy for ZnS nanoparticles. It is based on the titration of a poor liquid into a stable dispersion, which leads to the preferred flocculation of larger particles. Afterwards, these flocks must be separated from the continuous phase. While on lab scale the formed flocks can be easily separated by centrifugation from the fine fraction, for larger scale production using continuous processes, new concepts are urgently needed. Herein we developed a filtration process for flock removal that allows the handling of larger quantities. For process design, we first investigated the flock properties in order to know how stable the generated flocks are and how the flock properties can be controlled. Then, we replaced the classical flock separation by centrifugation through separation by surface filtration under the constraint that the underlying separation efficiency was not affected. By the future use of properly controlled, alternating filtration modules, our work opens the door for establishing an urgently needed, scalable post-processing for sub-10 nm nanoparticles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.