Abstract

AbstractKainic acid, the flagship member of the kainoid family of natural neurochemicals, is a widely used neuropharmacological agent that helped unravel the key role of ionotropic glutamate receptors, including the kainate receptor, in the central nervous system. Worldwide shortages of this seaweed natural product in the year 2000 prompted numerous chemical syntheses, including scalable preparations with as few as six‐steps. Herein we report the discovery and characterization of the concise two‐enzyme biosynthetic pathway to kainic acid from l‐glutamic acid and dimethylallyl pyrophosphate in red macroalgae and show that the biosynthetic genes are co‐clustered in genomes of Digenea simplex and Palmaria palmata. Moreover, we applied a key biosynthetic α‐ketoglutarate‐dependent dioxygenase enzyme in a biotransformation methodology to efficiently construct kainic acid on the gram scale. This study establishes both the feasibility of mining seaweed genomes for their biotechnological prowess.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call