Abstract
Passive daytime radiative cooling (PDRC) provides a zero-energy cooling technology to reduce the global fossil energy consumption and has already attracted tremendous interest. However, breaking the trade-off between the pursuit of ultrahigh dual-band (solar and atmospheric window) optical properties and the compatibility of multiple functional requirements by application is still a big challenge for PDRC. By introducing the photon slab-porous effect with strong sunlight backward scattering and inspired by human skin (epidermis and dermis) with recorded medical infrared emittance and multi-functions, we proposed an efficient dual-band optical property design strategy for PDRC. Through a simple and scalable dip dyeing process, the fabricated bio-skin-inspired PDRC metafabric exhibited superior dual-band optical properties, while both the solar reflectance and atmospheric window emittance can reach 97%. Outdoor tests demonstrated that the bio-PDRC metafabric achieved a maximum sub-ambient temperature drop of 12.6 °C in daytime. A human wearing a hat made of bio-PDRC metafabric can be 16.6 °C cooler than the one wearing a common hat. The bio-PDRC metafabric also exhibited superior performance of breathability, waterproofness, flexibility, strength, and durability to fulfill the multiple demands of personal thermal management, vents, and car covers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.