Abstract

Gravitational waves represent a new opportunity to study and interpret phenomena from the universe. In order to efficiently detect and analyze them, advanced and automatic signal processing and machine learning techniques could help to support standard tools and techniques. Another challenge relates to the large volume of data collected by the detectors on a daily basis, which creates a gap between the amount of data generated and effectively analyzed. In this paper, we propose two approaches involving deep auto-encoder models to analyze time series collected from Gravitational Waves detectors and provide a classification label (noise or real signal). The purpose is to discard noisy time series accurately and identify time series that potentially contain a real phenomenon. Experiments carried out on three datasets show that the proposed approaches implemented using the Apache Spark framework, represent a valuable machine learning tool for astrophysical analysis, offering competitive accuracy and scalability performances with respect to state-of-the-art methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.