Abstract
This paper introduces the Hopsworks platform to the entire Earth Observation (EO) data community and the Copernicus programme. Hopsworks is a scalable data-intensive open-source Artificial Intelligence (AI) platform that was jointly developed by Logical Clocks and the KTH Royal Institute of Technology for building end-to-end Machine Learning (ML)/Deep Learning (DL) pipelines for EO data. It provides the full stack of services needed to manage the entire life cycle of data in ML. In particular, Hopsworks supports the development of horizontally scalable DL applications in notebooks and the operation of workflows to support those applications, including parallel data processing, model training, and model deployment at scale. To the best of our knowledge, this is the first work that demonstrates the services and features of the Hopsworks platform, which provide users with the means to build scalable end-to-end ML/DL pipelines for EO data, as well as support for the discovery and search for EO metadata. This paper serves as a demonstration and walkthrough of the stages of building a production-level model that includes data ingestion, data preparation, feature extraction, model training, model serving, and monitoring. To this end, we provide a practical example that demonstrates the aforementioned stages with real-world EO data and includes source code that implements the functionality of the platform. We also perform an experimental evaluation of two frameworks built on top of Hopsworks, namely Maggy and AutoAblation. We show that using Maggy for hyperparameter tuning results in roughly half the wall-clock time required to execute the same number of hyperparameter tuning trials using Spark while providing linear scalability as more workers are added. Furthermore, we demonstrate how AutoAblation facilitates the definition of ablation studies and enables the asynchronous parallel execution of ablation trials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.