Abstract

Arrays of DNA-functionalized graphene field-effect transistors (gFETs) hold great promise for high-performance vapor sensing. In this chapter, we describe methods for the scalable production of gFET-based vapor sensors with high sensitivity and efficiency in size, cost, and time. Large-area graphene sheets were prepared via chemical vapor deposition (CVD); a standard photolithographic processing for large-area graphene was used to fabricate gFETs with high mobility and low doping level under ambient conditions. The gFETs were functionalized by single-stranded DNA (ssDNA), which binds to the graphene channels through π-π stacking interaction and provides affinity to a wide range of chemical vapors. The resulting sensing arrays demonstrate detection of target vapor molecules down to parts-per-million concentrations with high selectivity among analytes with high chemical similarity including a series of carboxylic acids and structural isomers of carboxylic acids and pinene.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call