Abstract

Fabrication of antibacterial surfaces is an approach to reduce environmental bacterial burden and risk of infection transmission. Antibacterial coatings based on cationic polymers have been commonly used for this purpose, but coating methods to immobilize these polymers over large area substrates are limited. Herein, we report a facile aqueous-based method of immobilizing quaternized chitosan (QCS) on polymer and metal substrates via electrostatic interaction with substrate-anchored multivalent polyphosphate ions to form transparent antibacterial coatings of micron thickness. The QCS coatings are noncytotoxic and yet demonstrate a high killing efficacy against two clinically relevant bacteria, Staphylococcus aureus and Pseudomonas aeruginosa, when challenged with bacteria-loaded droplets or contacted with a bacteria-loaded dry surface. The coatings were stable when subjected to wiping, and the QCS-coated substrates retained their efficacy and could be reused for multiple cycles after wiping the contaminat...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.