Abstract

Herein, we demonstrate a microwave-assisted chemical reduction technique to exfoliate a few layers of graphene from the natural waste material, ‘coconut shell’. The microwave irradiation coconut shell is subjected to structural, morphological and functional groups characterization methods including SEM, Raman, FTIR and XPS spectroscopic analyses. The formation of biomass reduced graphene (BRG) has been confirmed through Raman and FTIR spectroscopic analyzes with the presence of D, G and 2D and other functional spectral bands, respectively. The surface topography of the BRG exhibits two-dimensional mat structures with wrinkle topography, imaged by electron microscopic techniques. The metallic behaviour of the BRG is evaluated by band structure calculation using density functional theory. The synthesized nanostructure has been evaluated for exhaled diabetic breath sensing application by fabricating sensor device on the paper-based substrate by roll-to-roll coating technique. The BRG sensor exhibited enhanced sensing response at a very lower concentration of diabetic biomarker with long term stability and rapid response/recovery time of 1.11 s/41.25 s, respectively. Based on our findings, the microwave-assisted BRG is a potential candidate for fabricating highly scalable, inherently safe, economically viable and excellent sensing performance to detect exhaled diabetic breath at room temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.