Abstract
Software developers often duplicate source code to replicate functionality. This practice can hinder the maintenance of a software project: bugs may arise when two identical code segments are edited inconsistently. This paper presents DejaVu, a highly scalable system for detecting these general syntactic inconsistency bugs. DejaVu operates in two phases. Given a target code base, a parallel /inconsistent clone analysis/ first enumerates all groups of source code fragments that are similar but not identical. Next, an extensible /buggy change analysis/ framework refines these results, separating each group of inconsistent fragments into a fine-grained set of inconsistent changes and classifying each as benign or buggy. On a 75+ million line pre-production commercial code base, DejaVu executed in under five hours and produced a report of over 8,000 potential bugs. Our analysis of a sizable random sample suggests with high likelihood that at this report contains at least 2,000 true bugs and 1,000 code smells. These bugs draw from a diverse class of software defects and are often simple to correct: syntactic inconsistencies both indicate problems and suggest solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.