Abstract

In wireless sensor networks, hundreds or thousands of microsensors are deployed in an uncontrolled way to monitor and gather information of environments. Sensor nodes have limited power, computational capacities, memory, and communication capability. In this paper, we propose a novel scheme for data gathering where sensor information periodically propagates without any centralized control from the edge of a sensor network to a base station as the propagation forms a concentric circle. By observing the radio signals emitted by sensor nodes in its vicinity, a sensor node independently determines the cycle and the timing at which it emits sensor information in synchrony. For this purpose, we adopt a pulse-coupled oscillator model based on biological mutual synchronization such as that used by flashing fireflies, chirping crickets, and pacemaker cells. Through simulation experiments, we confirmed that our scheme can gather sensor information in a fully-distributed, self-organizing, robust, adaptable, scalable, and energy-efficient manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.