Abstract
Digital imaging plays a critical role for image guided diagnosis and clinical trials, and the amount of image data is fast growing. There are two major requirements for image data management: scalability for massive scales and support of comprehensive queries. Traditional Picture Archiving and Communication Systems (PACS for short) are based on relational data management systems and suffer from limited scalability and query support. Therefore, new systems that support fast, scalable and comprehensive queries on image data are highly demanded. In this paper, we introduce two alternative approaches: DCMRL/XMLStore (RL/XML for short)-a parallel, hybrid relational and XML data management approach, and DCMDocStore (DOC for short)-a NoSQL document store approach. DCMRL/XMLStore manages DICOM images as binary large objects and metadata as relational tables and XML documents based on IBM DB2, which is parallelized through data partitioning. DCMDocStore manages DICOM metadata as JSON objects, and DICOM images as encoded attachments in MongoDB running on multiple nodes. We have delivered two open source systems DCMRL/XMLStore and DCMDocStore. Both systems support scalable data management and comprehensive queries. We also evaluated them with nearly one million DICOM images from National Biomedical Imaging Archive. The results show that, DCMDocStore demonstrates high data loading speed, high scalability and fault tolerance. DCMRL/XMLStore provides efficient queries, but comes with slower data loading. Traditional PACS systems have inherent limitations on flexible queries and scalability for massive amount of images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.