Abstract

This paper deals with Internet of Things (IoT) data analytics in a collaborative platform where computing resources are available both at the network edge and at the backend cloud. Thereby, the requirements of both low-latency and delaytolerant IoT applications can be met. Moreover, this platform faces the challenging heterogeneous features of IoT data, i.e. its high dimensionality or its geo-distributed and streaming data nature. The proposed approach relies on two pillars. On the one hand, recent advances of machine learning (ML) techniques are leveraged to describe how the IoT data analytics can be performed in our platform. On the other hand, the virtualization, centralized management, global view and programmability of the computing and network resources is considered to fulfill the requirements of the ML methods. Unlike the related work, herein the interplay and synergies between those two pillars is explained. Also the ML methods for this collaborative platform are described in more detail.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.