Abstract

Pairwise learning is an important learning topic in the machine learning community, where the loss function involves pairs of samples (e.g., AUC maximization and metric learning). Existing pairwise learning algorithms do not perform well in the generality, scalability and efficiency simultaneously. To address these challenging problems, in this paper, we first analyze the relationship between the statistical accuracy and the regularized empire risk for pairwise loss. Based on the relationship, we propose a scalable and efficient adaptive doubly stochastic gradient algorithm (AdaDSG) for generalized regularized pairwise learning problems. More importantly, we prove that the overall computational cost of AdaDSG is O(n) to achieve the statistical accuracy on the full training set with the size of n, which is the best theoretical result for pairwise learning to the best of our knowledge. The experimental results on a variety of real-world datasets not only confirm the effectiveness of our AdaDSG algorithm, but also show that AdaDSG has significantly better scalability and efficiency than the existing pairwise learning algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.