Abstract

We demonstrate the uniqueness, unclonability and secure authentication of N = 56 physical unclonable functions (PUFs) realized from silicon photonic moiré quasicrystal interferometers. Compared to prior photonic-PUF demonstrations typically limited in scale to only a handful of unique devices and on the order of 10 false authentication attempts, this work examines > 103 inter-device comparisons and false authentication attempts. Device fabrication is divided across two separate fabrication facilities, allowing for cross-fab analysis and emulation of a malicious foundry with exact knowledge of the PUF photonic circuit design and process. Our analysis also compares cross-correlation based authentication to the traditional Hamming distance method and experimentally demonstrates an authentication error rate AER = 0%, false authentication rate FAR = 0%, and an estimated probability of cloning below 10−30. This work validates the potential scalability of integrated photonic-PUFs which can attractively leverage mature wafer-scale manufacturing and automated contact-free optical probing. Such structures show promise for authenticating hardware in the untrusted supply chain or augmenting conventional electronic-PUFs to enhance system security.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.