Abstract

We present parallel computational geometry algorithms that are scalable, architecture independent, easy to implement, and have, with high probability, an optimal time complexity for uniformly distributed random input data. Our methods apply to multicomputers with arbitrary interconnection network or bus system. The following problems are studied in this paper: (1) lower envelope of line segments, (2) visibility of parallelepipeds, (3) convex hull, (4) maximal elements, (5) Voronoi diagram, (6) all-nearest neighbors, (7) largest empty circle, and (8) largest empty hyperrectangle. Problems 2-8 are studied for d-dimensional space, d=O(1). We implemented and tested the lower envelope algorithm and convex hull algorithm (for d=3 and d=4) on a CM5. The results indicate that our methods are of considerable practical relevance. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.