Abstract
Community Question Answering (CQA) sites, such as Stack Overflow and Yahoo! Answers, have become very popular in recent years. These sites contain rich crowdsourcing knowledge contributed by the site users in the form of questions and answers, and these questions and answers can satisfy the information needs of more users. In this article, we aim at predicting the voting scores of questions/answers shortly after they are posted in the CQA sites. To accomplish this task, we identify three key aspects that matter with the voting of a post, i.e., the non-linear relationships between features and output, the question and answer coupling, and the dynamic fashion of data arrivals. A family of algorithms are proposed to model the above three key aspects. Some approximations and extensions are also proposed to scale up the computation. We analyze the proposed algorithms in terms of optimality, correctness, and complexity. Extensive experimental evaluations conducted on two real data sets demonstrate the effectiveness and efficiency of our algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Knowledge and Data Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.