Abstract

Since the early days of the investigation on resistive switching (RS), the independence of the ON-state resistance with actual cell area has been a trademark of filamentary-switching. However, with the continuous downscaling of the memory cell down to 10 x 10 nm2 and below, the persistence of this phenomena raises intriguing questions on the conductive filaments (CFs) and its dimensions. Particularly, the cell functionality demonstrated at relatively high switching current (> 100 μA) implies a high current density (> 106 A/cm2) inside a CF supposedly confined in few hundreds on nm3. We previously demonstrated a methodology for the direct observation of CFs in integrated devices namely scalpel SPM, which overcomes most of the characterization challenges imposed by the device structure and the small CF lateral dimensions. In this letter, we use scalpel SPM to clarify the scaling potential of HfO2-based valence change memory (VCM) by characterization of CFs programmed at relatively high switching current and by AFM tip-induced RS experiments. Besides the demonstration of a remarkable scaling potential for the VCM technology, our results are also used to clarify the present understanding on the AFM-based experiments.

Highlights

  • Since the early days of the investigation on resistive switching (RS), the independence of the ON-state resistance with actual cell area has been a trademark of filamentaryswitching

  • We previously demonstrated a methodology for the direct observation of conductive filaments (CFs) in integrated devices namely scalpel SPM, which overcomes most of the characterization challenges imposed by the device structure and the small CF lateral dimensions

  • The resistance of the CF is related to the ionic migration and nanoscale chemical reactions driven by the electric field

Read more

Summary

Introduction

Since the early days of the investigation on resistive switching (RS), the independence of the ON-state resistance with actual cell area has been a trademark of filamentaryswitching. We use scalpel SPM to clarify the scaling potential of HfO2-based valence change memory (VCM) by characterization of CFs programmed at relatively high switching current and by AFM tip-induced RS experiments.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.