Abstract

Inertial deposition of small (less than a few µm in diameter) aerosol particles in mm-scale bubbles is an old but unsettled issue in modeling of pool scrubbing phenomenon. Whereas existing practical models give no specific consideration to the bubble-internal transport, some studies have shown that inertial transport affects considerably the particle deposition rate. We show, on the basis of Lagrangian simulations of particles advected by steady internal circulation in a spherical bubble, that particle centrifugal velocity becomes scale invariant for low- Stokes numbers (St≤10-2) when the characteristic timescale is chosen to be that for transversal particle motion at the Stokes terminal velocity corresponding to the local fluid acceleration. Because a scaling law can be derived by running simulations with a small number of particles, it can provide a practical tool for considering the influence of inertial particle transport within the bubble on the decontamination factor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.