Abstract
Differential evolution (DE) has become a very powerful tool for global continuous optimization problems. Parameter adaptations are the most commonly used techniques to improve its performance. The adoption of these techniques has assisted the success of many adaptive DE variants. However, most studies on these adaptive DEs are limited to some small-scale problems, e.g. with less than 100 decision variables, which may be quite small comparing to the requirements of real-world applications. The scalability performance of adaptive DE is still unclear. In this paper, based on the analyses of similarities and drawbacks of existing parameter adaptation schemes in DE, we propose a generalized parameter adaptation scheme. Applying the scheme to DE results in a new generalized adaptive DE (GaDE) algorithm. The scalability performance of GaDE is evaluated on 19 benchmark functions with problem scale from 50 to 1,000 decision variables. Based on the comparison with three other algorithms, GaDE is very competitive in both the performance and scalability aspects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.