Abstract

Large-ensemble climate experiments were performed to simulate future climates for a + 1.5 K rise in the global mean surface air temperatures relative to preindustrial levels as a subset of the database for Policy Decision making for future climate change (d4PDF), using the Non-Hydrostatic Regional Climate Model (NHRCM) with 20 km grid spacing. Along with present climate, + 2 K and + 4 K experimental outputs from the d4PDF already available, we investigated responses of surface air temperature (SAT) and precipitation on regional scales over Japan to global warming. The reproducibility of the present climate experiment is satisfactory to investigate future changes in the Japanese climate, and dynamical downscaling from the global to the regional climate states improves the frequency of heavy daily precipitation. In the future, SAT over Japan rises linearly with and faster than the global mean SAT. The meridional contrast of SAT rises becomes more pronounced as global warming progresses. Winter precipitation decreases/increases linearly in the western/eastern Japan, reflected by weakening of future winter monsoons. Annual maximum daily precipitation (R1d) shows a closely linear increase with the global SAT rise, but annual precipitation is mostly unchanged. The global mean SAT change from + 1.5 to + 2 K enhances R1d by 2.7% over the Japanese Islands, although the increase of R1d varies by regions. The increase in R1d is 5% in northern Japan, where the SAT increases are greater than those in other regions.

Highlights

  • The Meteorological Research Institute has been developing a non-hydrostatic regional climate model (NHRCM, Sasaki et al 2008) to predict the future climate for Japan based on an operational non-hydrostatic model from the Japan Meteorological Agency

  • The purpose of this study is to investigate the regional characteristics of the increase rate of surface air temperature and precipitation using the large ensemble past and future climate simulation assuming + 1.5 K, + 2 K, and + 4 K relative to preindustrial period

  • Reproducibility of the present climate over the Japanese region Dynamical downscaling of the Non-Hydrostatic Regional Climate Model (NHRCM) improves the expressions of topographic effects and the reproduction of extreme phenomena, and maintains the synoptic fields of the MRI-AGCM

Read more

Summary

Introduction

The database contains the outputs of large-ensemble experiments over a 5000 year span under present and future climate conditions; in the latter, the global average SAT is 4 K higher relative to preindustrial levels. The purpose of this study is to investigate the regional characteristics of the increase rate of surface air temperature and precipitation using the large ensemble past and future climate simulation assuming + 1.5 K, + 2 K, and + 4 K relative to preindustrial period.

Objectives
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.