Abstract
IntroductionTechniques of distraction enterogenesis have been explored to provide increased intestinal length to treat short bowel syndrome (SBS). Self-expanding, polycaprolactone (PCL) springs have been shown to lengthen bowel in small animal models. Their feasibility in larger animal models is a critical step before clinical use. MethodsJuvenile mini-Yucatan pigs underwent jejunal isolation or blind ending Roux-en-y jejunojejunostomy with insertion of either a PCL spring or a sham PCL tube. Extrapolated from our spring characteristics in rodents, proportional increases in spring constant and size were made for porcine intestine. ResultsJejunal segments with 7mm springs with k between 9 and 15N/m demonstrated significantly increased lengthening in isolated segment and Roux-en-y models. Complications were noted in only two animals, both using high spring constant k>17N/m. Histologically, lengthened segments in the isolated and Roux models demonstrated significantly increased muscularis thickness and crypt depth. Restoration of lengthened, isolated segments back into continuity was technically feasible after 6weeks. ConclusionSelf-expanding, endoluminal PCL springs, which exert up to 0.6N force, safely achieve significant intestinal lengthening in a translatable, large-animal model. These spring characteristics may provide a scalable model for the treatment of SBS in children.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.