Abstract

Processing-in-memory (PIM), where the compute is moved closer to the memory or the data, has been widely explored to accelerate emerging workloads. Recently, different PIM-based systems have been announced by memory vendors to minimize data movement and improve performance as well as energy efficiency. One critical component of PIM is the large amount of compute parallelism provided across many PIM "nodes'' or the compute units near the memory. In this work, we provide an extensive evaluation and analysis of real PIM systems based on UPMEM PIM. We show that while there are benefits of PIM, there are also scalability challenges and limitations as the number of PIM nodes increases. In particular, we show how collective communications that are commonly found in many kernels/workloads can be problematic for PIM systems. To evaluate the impact of collective communication in PIM architectures, we provide an in-depth analysis of two workloads on the UPMEM PIM system that utilize representative common collective communication patterns -- AllReduce and All-to-All communication. Specifically, we evaluate 1) embedding tables that are commonly used in recommendation systems that require AllReduce and 2) the Number Theoretic Transform (NTT) kernel which is a critical component of Fully Homomorphic Encryption (FHE) that requires All-to-All communication. We analyze the performance benefits of these workloads and show how they can be efficiently mapped to the PIM architecture through alternative data partitioning. However, since each PIM compute unit can only access its local memory, when communication is necessary between PIM nodes (or remote data is needed), communication between the compute units must be done through the host CPU, thereby severely hampering application performance. To increase the scalability (or applicability) of PIM to future workloads, we make the case for how future PIM architectures need efficient communication or interconnection networks between the PIM nodes that require both hardware and software support.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.