Abstract
Public Bicycle Sharing Systems (BSS) have spread in many cities for the last decade. The need of analysis tools to predict the behavior or estimate balancing needs has fostered a wide set of approaches that consider many variables. Often, these approaches use a single scenario to evaluate their algorithms, and little is known about the applicability of such algorithms in BSS of different sizes. In this paper, we evaluate the performance of widely known prediction algorithms for three sized scenarios: a small system, with around 20 docking stations, a medium-sized one, with 400+ docking stations, and a large one, with more than 1500 stations. The results show that Prophet and Random Forest are the prediction algorithms with more consistent results, and that small systems often have not enough data for the algorithms to perform a solid work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.