Abstract
The paper is devoted to a scalability study of Cimmino algorithm for linear inequality systems. This algorithm belongs to the class of iterative projection algorithms. For the analytical analysis of the scalability, the BSF (Bulk Synchronous Farm) parallel computation model is used. An implementation of the Cimmino algorithm in the form of operations on lists using higher-order functions Map and Reduce is presented. An analytical estimation of the upper scalability bound of the algorithm for cluster computing systems is derived. An information about the implementation of Cimmino algorithm on lists in C++ language using the BSF program skeleton and MPI parallel programming library is given. The results of large-scale computational experiments performed on a cluster computing system are demonstrated. A conclusion about the adequacy of the analytical estimations by comparing them with the results of computational experiments is made.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.