Abstract

Software Defined Networking simplifies design, monitoring and management of next generation networks by segregating a legacy network into a centralized control plane and a remotely programmable data plane. The intelligent centralized SDN control plane controls behavior of forwarding devices in processing the incoming packets and provides a bird-eye view of entire network at a single central point. The centralized control provides network programmability and facilitates introduction of adaptive and automatic network control. The SDN control plane can be implemented by using following three deployment models: (i) physically centralized, in which a single SDN controller is configured for a network; (ii) physically distributed but logically centralized, wherein multiple SDN controllers are used to manage a network; and (iii) hybrid, in which both legacy distributed control and centralized SDN control coexist. This manuscript presents all these control plane architectures and discusses various SDN controllers supporting these architectures. We have analyzed more than forty SDN controllers in terms of following performance parameters: scalability, reliability, consistency and security. We have examined the mechanisms used by various SDN controllers to address the said performance parameters and have highlighted the pros and cons associated with each mechanism. In addition to it, this manuscript also highlights number of research challenges and open issues in different SDN control plane architectures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call