Abstract

Warp processors are a novel architecture capable of autonomously optimizing an executing application by dynamically re-implementing critical kernels within the software as custom hardware circuits in an on-chip FPGA. Previous research on warp processing focused on low-power embedded systems, incorporating a low-end ARM processor as the main software execution resource. We provide a thorough analysis of the scalability of warp processing by evaluating several possible warp processor implementations, from low-power to high-performance, and by evaluating the potential for parallel execution of the partitioned software and hardware. We further demonstrate that even considering a high-performance 1 GHz embedded processor, warp processing provides the equivalent performance of a 2.4GHz processor. By further enabling parallel execution between the processes and FPGA, the parallel warp processor execution provides the equivalent performance of a 3.2 GHz processor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.