Abstract
Membraneless biomolecular condensates (BMCs) contribute to the replication of a growing number of viruses but remain to be functionally characterized. Previously, we demonstrated that pan-retroviral nucleocapsid (NC) proteins phase separated into condensates regulating virus assembly. Here we discover that intrinsically disordered human immunodeficiency virus-type 1 (HIV-1) core proteins condense with the viral genomic RNA (vRNA) to assemble as BMCs attaining a geometry characteristic of viral reverse transcription complexes. We explore the predisposition, mechanisms, and pharmacologic sensitivity of HIV-1 core BMCs in living cells. HIV-1 vRNA-interacting NC condensates were found to be scaffolds onto which client capsid, reverse transcriptase, and integrase condensates assemble. HIV-1 core BMCs exhibit fundamental characteristics of BMCs and are drug-sensitive. Lastly, protease-mediated maturation of Gag and Gag-Pol precursor proteins yield abundant and visible BMCs in cells. This study redefines HIV-1 core components as fluid BMCs and advances our understanding of the nature of viral cores during ingress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.