Abstract
Scaffold-hopped (SH) compounds are bioactive compounds structurally different from known active compounds. Identifying SH compounds in the ligand-based approaches has been a central issue in medicinal chemistry, and various molecular representations of scaffold hopping have been proposed. However, appropriate representations for SH compound identification remain unclear. Herein, the ability of SH compound identification among several representations was fairly evaluated based on retrospective validation and prospective demonstration. In the retrospective validation, the combinations of two screening algorithms and four two- and three-dimensional molecular representations were compared using controlled data sets for the early identification of SH compounds. We found that the combination of the support vector machine and extended connectivity fingerprint with bond diameter 4 (SVM-ECFP4) and SVM and the rapid overlay of chemical structures (SVM-ROCS) showed a relatively high performance. The compounds that were highly ranked by SVM-ROCS did not share substructures with the active training compounds, while those ranked by SVM-ECFP4 were mostly recombinant. In the prospective demonstration, 93 SH compounds were prepared by screening the Namiki database using SVM-ROCS, targeting ABL1 inhibitors. The primary screening using surface plasmon resonance suggested five active compounds; however, in the competitive binding assays with adenosine triphosphate, no hits were found.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.