Abstract

Multicellular 3D tissue constructs (MTCs) are important in biomedical research due to their capacity to accurately mimic the structure and variation found in real tissues. This study presents a novel bio-orthogonal engineering strategy (BIEN), a transformative scaffold-free approach, to create advanced MTCs. BIEN harnesses the cellular biosynthetic machinery to incorporate bio-orthogonal azide reporters into cell surface glycoconjugates, followed by a click reaction with multiarm PEG, resulting in rapid assembly of MTCs. The implementation of this cutting-edge strategy culminates in the formation of uniform, heterogeneous spheroids, characterized by a high degree of intercellular junction and pluripotency. Remarkably, MTCs simulate tumor features, ensure cell heterogeneity, and significantly improve the subcutaneous xenograft model after transplantation, thereby bolstering both in vitro and in vivo research models. In conclusion, the utilization of the bio-orthogonal engineering strategy as a scaffold-free method to generate superior MTCs holds promising potential for driving advancements in cancer research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.