Abstract

IntroductionDevelopment of a tissue-engineered construct for hepatic regeneration remains a challenging task due to the lack of an optimum environment that support the growth of hepatocytes. Hydrogel systems possess many similarities with tissues and have the potential to provide the microenvironment essential for the cells to grow, proliferate, and remain functionally active. MethodsIn this work, fibrin (FIB) incorporated injectable alginate dialdehyde (ADA) - gelatin (G) hydrogel was explored as a matrix for liver tissue engineering. ADA was prepared by periodate oxidation of sodium alginate. An injectable formulation of ADA-G-FIB hydrogel was prepared and characterized by FTIR spectroscopy, Scanning Electron Microscopy, and Micro-Computed Tomography. HepG2 cells were cultured on the hydrogel system; cellular growth and functions were analyzed using various functional markers. ResultsFTIR spectra of ADA-G-FIB depicted the formation of Schiff's base at 1608.53 cm−1 with a gelation time of 3 min. ADA-G-FIB depicted a 3D surface topography with a pore size in the range of 100–200 μm. The non-cytotoxic nature of the scaffold was demonstrated using L929 cells and more than 80 % cell viability was observed. Functional analysis of cultured HepG2 cells demonstrated ICG uptake, albumin synthesis, CYP-P450 expression, and ammonia clearance. ConclusionADA-G-FIB hydrogel can be used as an effective 3D scaffold system for liver tissue engineering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.