Abstract

Morphology and mechanical properties of scaffolds seeded with osteoblastes cells used for bone and cartilage repair are the critical factors in bone tissue engineering. In this work, adding CMC and controlling temperature for nano-hydroxyapatite (HA)-b-tricalcium phosphate (b-TCP) scaffold using Polymeric sponge method provide suitable properties. A developed computer system was used to determine properties of scaffold. Porosity, shape and connectivity of pores were analysed based on image processing method. Cells were seeded on scaffold and the differentiation rate was calculated using image analysis. The fabricated sample showed high porosity (nearly 61%) and high compressive strength (nearly 16 MPa), as well as having a well pore size of 200 μm and more. Comparing to Archimedes method, the image result was more accurate. Internal porosity was more than surface porosity due to skin effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.