Abstract

Alternative novel precursor chemistries for the vapor phase deposition of rare-earth (RE) oxide thin films were developed by synthesising the homoleptic guanidinate compounds tris(N,N'-diisopropyl-2-dimethylamidoguanidinato)-scandium(III) [Sc(DPDMG)(3)] (1), tris(N,N'-diisopropyl-2-dimethylamidoguanidinato)-erbium(III), [Er(DPDMG)(3)] (2) and tris(N,N'-diisopropyl-2-dimethylamidoguanidinato)-yttrium(III), [Y(DPDMG)(3)] (3). All three compounds are monomeric as revealed by single crystal X-ray diffraction (XRD) analysis, nuclear magnetic resonance (NMR) and electron impact mass spectrometry (EI-MS). The thermal analysis revealed that the compounds are volatile and very stable under evaporation conditions. Therefore the complexes were evaluated as precursors for the growth of Sc(2)O(3), Er(2)O(3) and Y(2)O(3) thin films, respectively, by metal-organic chemical vapor deposition (MOCVD). Uniform Sc(2)O(3), Er(2)O(3) and Y(2)O(3) films on Si(100) substrates with reproducible quality were grown by MOCVD by the combination of the respective guanidinate precursors and oxygen in the temperature range 350-700 °C. The structural, morphological, compositional and electrical properties of the films were investigated in detail. The most relevant film properties are highlighted in relation to the distinct advantages of the novel precursor chemistries in comparison to the commonly used literature known RE precursors. This study shows that compounds 1-3 are very good precursors for MOCVD yielding Sc(2)O(3), Er(2)O(3) and Y(2)O(3) thin films which are stoichiometric and display suitable electrical properties for their potential use as high dielectric constant (high-k) materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.