Abstract

It is important to autopick an event’s arrival time and classify the corresponding phase for seismic data processing. Traditional arrival-time picking algorithms usually need 3C seismograms to classify event phase. However, a large number of borehole seismic data sets are recorded by arrays of hydrophones or distributed acoustic sensing elements whose sensors are 1C and cannot be analyzed for particle motion or phase polarization. With the development of deep learning techniques, researchers have tried data mining with the convolutional neural network (CNN) for seismic phase autopicking. In the previous work, CNN was applied to process 3C seismograms to detect phase and pick arrivals. We have extended this work to process 1C seismic data and focused on two main points. One is the effect of the label vector on the phase detection performance. The other is to propose an architecture to deal with the challenge from the insufficiency of training data in the coverage of different scenarios of [Formula: see text] ratios. Two novel points are summarized after this analysis. First, the width of the label vector can be designed through signal time-frequency analysis. Second, a combination of CNN and recurrent neural network architecture is more suitable for designing a P- and S-phase detector to deal with the challenge from the insufficiency of training data for 1C recordings in time-lapse seismic monitoring. We perform experiments and analysis using synthetic and field time-lapse seismic recordings. The experiments show that it is effective for 1C seismic data processing in time-lapse monitoring surveys.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call