Abstract
This article proposes an innovative viscosity sensor based on the thickness-shear vibration of stress compensated (SC)-cut quartz resonator. The thickness-shear mode is first analyzed and further studied with fluid-structure interaction between the resonator and the viscous fluid loading. The characteristic equation is derived based on the 3-D linear piezoelectric equations and solved for sensitivity analysis. Then laboratory experiment is carried out to validate the theory. To conduct the viscosity measurement, the SC-cut quartz resonator is integrated with a U-tube test fixture, which is designed and fabricated for sensor housing to avoid the influence of the mass of the fluid. The resonator is tested with various viscosities by tuning the ratio of glycerol/water mixture. Experiment results show consistency with the analytical solution, which together present an improved sensitivity of viscosity measurement by using SC-cut quartz resonator comparing to other resonator-based viscosity sensors. The proposed viscosity sensor is sensitive, accurate, and portable, and therefore can be applied to real-time, on-site measurement or sampling of fluidic samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.