Abstract

Selective cyclooxygenase (COX)-1 inhibitors can be employed as potential cardioprotective drugs. Moreover, COX-1 plays a key role in inflammatory processes and its activity is associated with some types of cancer. In this work, we designed and synthesized a set of compounds that structurally mimic the selective COX-1 inhibitors, SC-560 and mofezolac, the central cores of which were replaced either with triazole or benzene rings. The advantage of this approach is a relatively simple synthesis in comparison with the syntheses of parent compounds. The newly synthesized compounds exhibited remarkable activity and selectivity toward COX-1 in the enzymatic in vitro assay. The most potent compound, 10a (IC50 = 3 nM for COX-1 and 850 nM for COX-2), was as active as SC-560 (IC50 =2.4nMforCOX-1 and470nMforCOX-2)toward COX-1 and it was even more selective. The in vitro COX-1 enzymatic activity was further confirmed in the cell-based whole-blood antiplatelet assay, where three out of four selected compounds (10a,c,d, and 3b) exerted outstanding IC50 values in the nanomolar range (9-252 nM). Moreover, docking simulations were performed to reveal key interactions within the COX-1 binding pocket. Furthermore, the toxicity of the selected compounds was tested using the normal human kidney HK-2 cell line.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.