Abstract

IntroductionUsing an magnetic resonance linear accelerator (MR-Linac) may improve the precision of visible tumor boosting with ultra-hypofractionation by accounting for daily positional changes in the target and organs at risk (OAR). Patients and methodsFifteen patients with prostate cancer and an MR-detected dominant lesion were treated on the MR-Linac with stereotactic body radiation (SBRT) to 40 Gy in 5 fractions, boosting the gross tumor volume (GTV) to 45 Gy with daily adaptive planning. Imaging was acquired again after initial planning (verification scan), and immediately after treatment (post-treatment scan). Prior to beam-on, additional adjustments were made on the verification scan. Contours were retrospectively adjusted on verification and post-treatment scans, and the daily plan recalculated on these scans to estimate the true dose delivered. ResultsThe median prostate D95% for plan 1, 2 and 3 was 40.3 Gy, 40.5 Gy and 40.3 Gy and DIL D95% was 45.7 Gy, 45.2 Gy and 44.6 Gy, respectively. Bladder filling was associated with reduced GTV coverage (p = 0.03, plan 1 vs 2) and prostate coverage (p = 0.03, plan 2 vs 3). The D0.035 cc constraint was exceeded on verification and post-treatment plans in 24 % and 33 % of fractions for the urethra, 31 % and 45 % for the bladder, and 35 % and 25 % for the rectum, respectively. ConclusionMR-Linac guided, daily adaptive SBRT with focal boosting of the GTV yields acceptable planned and delivered dosimetry. Adaptive planning with a MR-Linac may reliably deliver the prescribed dose to the intended tumor target.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call