Abstract
In this paper we study the robustness of the directional mean (a.k.a. circular mean) for different families of circular distributions. We show that the directional mean is robust in the sense of finite standardized gross error sensitivity (SB-robust) for the following families: (1) mixture of two circular normal distributions, (2) mixture of wrapped normal and circular normal distributions and (3) mixture of two wrapped normal distributions. We also show that the directional mean is not SB-robust for the family of all circular normal distributions with varying concentration parameter. We define the circular trimmed mean and prove that it is SB-robust for this family. In general the property of SB-robustness of an estimator at a family of probability distributions is dependent on the choice of the dispersion measure. We introduce the concept of equivalent dispersion measures and prove that if an estimator is SB-robust for one dispersion measure then it is SB-robust for all equivalent dispersion measures. Three different dispersion measures for circular distributions are considered and their equivalence studied.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.