Abstract

Binary hashing is an effective approach for content-based image retrieval, and learning binary codes with neural networks has attracted increasing attention in recent years. However, the training of hashing neural networks is difficult due to the binary constraint on hash codes. In addition, neural networks are easily affected by input data with small perturbations. Therefore, a sensitive binary hashing autoencoder (SBHA) is proposed to handle these challenges by introducing stochastic sensitivity for image retrieval. SBHA extracts meaningful features from original inputs and maps them onto a binary space to obtain binary hash codes directly. Different from ordinary autoencoders, SBHA is trained by minimizing the reconstruction error, the stochastic sensitive error, and the binary constraint error simultaneously. SBHA reduces output sensitivity to unseen samples with small perturbations from training samples by minimizing the stochastic sensitive error, which helps to learn more robust features. Moreover, SBHA is trained with a binary constraint and outputs binary codes directly. To tackle the difficulty of optimization with the binary constraint, we train the SBHA with alternating optimization. Experimental results on three benchmark datasets show that SBHA is competitive and significantly outperforms state-of-the-art methods for binary hashing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call