Abstract

Escherichia coli cells with mutations in recBC genes are defective for the main RecBCD pathway of recombination and have severe reductions in conjugational and transductional recombination, as well as in recombinational repair of double-stranded DNA breaks. This phenotype can be corrected by suppressor mutations in sbcB and sbcC(D) genes, which activate an alternative RecF pathway of recombination. It was previously suggested that sbcB15 and DeltasbcB mutations, both of which inactivate exonuclease I, are equally efficient in suppressing the recBC phenotype. In the present work we reexamined the effects of sbcB15 and DeltasbcB mutations on DNA repair after UV and gamma irradiation, on conjugational recombination, and on the viability of recBC (sbcC) cells. We found that the sbcB15 mutation is a stronger recBC suppressor than DeltasbcB, suggesting that some unspecified activity of the mutant SbcB15 protein may be favorable for recombination in the RecF pathway. We also showed that the xonA2 mutation, a member of another class of ExoI mutations, had the same effect on recombination as DeltasbcB, suggesting that it is an sbcB null mutation. In addition, we demonstrated that recombination in a recBC sbcB15 sbcC mutant is less affected by recF and recQ mutations than recombination in recBC DeltasbcB sbcC and recBC xonA2 sbcC strains is, indicating that SbcB15 alleviates the requirement for the RecFOR complex and RecQ helicase in recombination processes. Our results suggest that two types of sbcB-sensitive RecF pathways can be distinguished in E. coli, one that is activated by the sbcB15 mutation and one that is activated by sbcB null mutations. Possible roles of SbcB15 in recombination reactions in the RecF pathway are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call