Abstract
Bilingual semantic term association is very useful in cross-language information retrieval, statistical machine translation, and many other applications in natural language processing. In this paper, we present a method, named SBA-term, which applies sparse linear regression (Lasso, Least Squares with l <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> penalty) and L <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> rescaling for design matrix to the task of bilingual term association. The approach hinges on formulating the task as a feature selection problem within a classification framework. Our experimental results indicate that our novel proposed method is more efficient than co-occurrence at extracting relevant bilingual terms semantic associations. In addition, our approach connects the vibrant area of sparse machine learning to an important problem of natural language processing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.